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Abstract

The capacity of classical neurocomputers is limited by the number of clas-
sical degrees of freedom which is roughly proportional to the size of the
computer. By contrast, a hypothetical quantum neurocomputer can im-
plement  an exponentially larger number of the degrees of freedom within
the same size. In this paper an attempt is made to reconcile linear reversi-
ble structure of quantum evolution with nonlinear irreversible dynamics
for neural nets.

1. Introduction

The competition between digital and analog computers, i.e., between computa-

tions and simulations, has a long history. During the last fifty years, the theory of com-

putation has been based, implicitly, upon classical physics as idealized in the determinis-

tic Turing machine model. However, despite the many successes of digital computers, the

existence of so called hard problems has revealed limitations on their capabilities, since

the computational time for solving such problems grows exponentially with the size of

the problem.

“ It was well understood that one possible way to fight the “curse” of the combina-

torial explosion is to enrich digital computers with analog devices. In contradistinction to

a digital computer, which performs operations on numbers symbolizing an underlying

physical process, an analog computer processes information by exploiting physical phe-

nomena directly. It is this problem solving via direct simulation that allows an analog ap-

proach to reduce the complexity of the computations significantly. This idea was stressed

by Feynman [1] who demonstrated that the problem of exponential complexity in terms

of calculated probabilities can be reduced to a problem of polynomial complexity in

terms of simulated probabilities. Conceptually, a similar approach can be applied to the
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whole class of NP-complete problems. Indeed, the theory of computational complexity is

an attribute of digital approach to computations. At the same time, in principle, one can

find such a physical phenomenon whose mathematical description is equivalent to those

of a particular NP-complete problem. Them, incorporating this phenomenon into an ap-

propriate analog device, one can simulate the corresponding NP-conlplete problem. But

is it possible, in general, to find a new mathematical formulation for any intractable

problem in such a way that it becomes tractable? Some experts in computational com-

plexity believe that, in the spirit of the Godel  theorem, there always exists computational

problems such that every mathematical formulation that captures the essence of the

problem is intractable [2]. At this step, we cannot prove or disprove this statement.

There is another class of problems for which simulations are superior over con~-

putations.  In contradistinction to NP-conqJlete  problems whose complexity is in an ex-

ponentially large number of simple computations, these problems have complex and

sometimes, partially unknown analytical structure. Simulations of solutions to such

problems are based upon a black-box approach when unknown components of the model

are found in the course of a trial-and-error learning process. A typical representative of a

corresponding analog device implementing black-box-based simulations is a neuro-

computer where unknown (learnable) parameters are incorporated in the form of synaptic

interconnections between dynamical units called “neurons”. However, usually analog
computers are associated with certain limitations such as the lack of universality, slow

performance, and low accuracy, and this is the price to be paid for certain advantages of

simulations. A partial success in developnlent  of a universal analog device is associated

with neurocomputers  which are based upon massively parallel adaptive dynamical sys-

tems modeled on the general features of biological neural networks that are intended to

interact with the object of the real world in the same way the biological systems do.

However, the capacity of the neurocomputers is roughly proportional to the size of the

apparatus, and that limits actual power significantly.

A second way to fight a curse of dimension is to utilize a non deterministic ap-

proach to computations. This approach is associated with the Monte Carlo method intro-

duced by N. C. Metropolis and S. M. Ulam in 1940. The idea of this method is based

upon the relationships between the probabilistic characteristics of certain stochastic proc-

esses and solutions to some deterministic problems such

to differential equations, etc. The strength of the method

as values

is that its

of integrals, solutions

error does not depend
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on the number of variables in the problem, and therefore, if applicable, it breaks the curse

of dimension. The effectiveness of the Mor@Carlo  approach is inversely proportional to

the smoothness parameter that characterizes the degree of correlation within the input

data. However, the Monte-Carlo method is not the only way to apply nondeterminisism

for computations. There is a class of so-called randomized algorithms that are effective

for combinatorial problems. In general, a randomized strategy for this kind of problem is

useful when there are many ways in which an algorithm can proceed, but it is difficult to

determine a way that is guaranteed to be good. In particular, if the benefits of good

choices outweigh the costs of bad choices, a random selection of good and bad choices

can yield a good algorithm. *

In general, the theory of computational complexity proves that polynomial time

nondeterministic algorithms are more powerful than polynomial time deterministic ones.

For example, certain noncleterministic  algorithms are known that can probably find a so-

lution within guaranteed polynomial time. While other nondetertninistic  algorithms are

known that can certainly find a solution within probably polynomial time. Thus random-

ized algorithms defeat the curse of dimension by trading complexity for correctness or

completeness. However, the main limitation of the whole non deterministic approach is

in the generation of random numbers: the generators are slow and not always reliable

(i.e. the sequence of numbers that they procluce may harbor hidden correlations that no

truly random sequence would possess) . That is why the concept of a quan[utn  computer

became so attractive: its analog nature is based upon physical simulations of quantum

probabilities, and at the same time, it is universal (at least for modeling physical world).

Although the development of the quantum-mechanical device is still in progress, a

new quantum theory of computations has been founded [3], [4],[8]. This theory suggests

that there is a second fundamental advantage of the hypothetical quantum computer

which is based upon the wave properties of quantum probabilities: a single quantum

computer can follow many distinct computational paths all at the same time and produce

a final output depending on the interference of all of them. This particular property

opened up a new chain of algorithms that solve in polynomial time such hard problems as

factorization and discrete log, i.e., the problems that are believed to be intractable on any

classical computer.



In order to clarify the connection between quantum algorithms and combinatorial optimi-
zation, consider n binary variables x = xl, XZ,. . . Xfl; x, . . . 6 {0,1} and combine them into

larger number of variables as all possible products of n old variables:

y=x, @x2@...  @xn=x,xx  n,, x2x, xxn, ,.. xn,, etc.

The number of these new variables is N = 2“ . In many practical applications, a function

to be optimized is defined at a set of the new variables. For instance, in the course of a

spacecraft design, the optimal placement of sensors requires to minimize the cost function

which depends upon 2“ values of y, since each of n assigned places can be equipped or

not equipped by a sensor. Since the number of possible assignments grows exponentially

with the number of placements, it appears that the time required to solve this problem

must also grow exponentially (in the worst case) even if a single computation of each of

2“ values of the cost function is trivial. Actually it is this property which makes the

problems of combinatorial optimization intractable by classical computing.

There is a striking similarity between the structure of combinatorial problems and

some special properties of quantum evolution, namely, the property of quantum entan-
glement. This property follows from the fact that if two unitary matrices U, and U2 are

solutions to the Schrodinger equation, their tensor product U, 8 U2 will be also the solu-

tion to it. Therefore, with an input of n binary variables of the type x, one can obtain 2“
variables y as an output in one computational run. In other words, the transition from n

basic variables x to 2n combinatorial variables y are carried out by the laws of Nature,

and that is the analog foundation of quantum computing. Unfortunately, Nature also im-

poses severe restrictions on the amount of information that can be extracted from the su-

perposition of y answers. In particular, a direct measurement will yield only one answer,

although more clever measurement schemes can reveal

answers. The technique of quantum parallelism relies

measurements.

certain joint properties of all the y

upon the use of the latter type of

Actually the transition from x to y is carried out by n of 2 x 2 identity matrices

1”) as following:



Replacing identity matrices by non-identical unitary matrices S(’) one finds a new vari-
able Zj,l. which is combined of weighted sums of all the components of the variable y,

and that is due to another fundatnental  property of quantum mechanics: the interference

of probabilities (which is postulated).

If the matrices S(’) are chosen such that the variable z is equal to the cost function,

then the computation is accomplished: the output contains all the 2“ values of the cost

function. However, in order to find the optimal value of the combinatorial variable

Y 
= Y,, ! one has to inlPose an additional constraint UPOn the matrices S(’)> namely: the

weight coefficient of y<) must dominate over other weight coefficients in order to detect

this optimal value in a few number of measurements, and this constraint is, probably, the

toughest. Hence quantum computing does not allow iterations, feedbacks, or any other

types of control over the computational process: one must get the solution at once, or he

does not get it at all.

Thus, there are at least two areas where the quantum computer is expected to be

superior over the classical one: quantum mechanics (due to simulation of quantum prob-

abilities), and some specific combinatorial problems linked to operation research (due to

interference entanglement and of quantum probabilities).

In this paper an attempt is made to combine the power of quantum computing and

the dynamical complexity of neural nets. There are at least three reasons for such combi-

nations. Firstly, it will represent a universal analog device with a built-in random number

generator. Secondly, its capacity will be exponentially larger than those of a classical

neurocomputer due to the superposition and entanglement effects. Thirdly, it will intro-

duce iterations in quantum computing.

The main challenge of the approach is in reconciliation of linear reversible quan-

tum evolution and nonlinear irreversible dynamics of neural nets.
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2. Neural Net as Dynamical System

A neural net as a nonlinear dissipative dynamical system can be represented by

the following set of ordina~ differential equations:

[)r,x, =–x, +0 ~~)xj 7;>0
1 }

(1)

where x, ,are state variables, or mean soma potentials, characterizing the neuron activities,

~, , are constant control parameters representing the weights of synaptic interconnections,

Ii are suitable time constants, and ~(. ) is a sigmoid  function having a saturated non line-

arity [usually o(x) = tanh ~x, where ~ = consl  >0 is an additional control parameter].

An invariant characterizing the local dissipativity  of the system (1) is expressed

explicitly via its parameters:

(2)

A necessary (but not sufficient) condition that the system ( 1 ) has attractors is that

there are some domains in phase space where the invariant (2) is negative.

If the matrix To is symmetric

(3)

then equation (1) can be represented in the form of a gradient system, and therefore it can

have only static attractors. In the basin of a static attractor, the invariant (2) must be

negative.

Since the system (1) is nonlinear, it can have more than one attractor;

quently,  in some domains of phase space, the invariant (2) may be positive or zero.

conse-



Equation (1) presents the neural net in its “natural” form in the sense that xi and

Tti correspond to physical parameters: neuron potentials and synaptic interconnections,

respectively. However, it is important to emphasize that the relationship between the in-
variant of the “vector” xi and the “tensor” 7ti are not preserved by the coordinate trans-

formation, i.e., equation (1) does not possess an invariant tensor structure. Consequently,
the column xi and the matrix Tij cannot be treated as a vector and tensor, respectively.

In most applications, e.g. pattern recognition, optimization, decision-making,

control, associative memory, generalization, the neural nets performance is associated

with convergence to attractors The locations of attractors and their basins in phase space
can be prescribed by an appropriate choice of the synaptic weights Tti, i.e., by solving

inverse dynamical problems. However, since dimensionality  of neural nets is usually very

high (in biological systems it is of order of 1011 with the number of synaptic interconnec-

tions of the order of 10ls), the straightforward analytical approach can be very expensive

and time consuming. An alternative way to select synaptic weights in order to do specific
tasks was borrowed from biological systems. It is based upon iterative adjustments of 7,,

as a result of comparison of the net output with known correct answers (supervised

learning) or as a result of creating of new categories from the correlations of the input

data when correct answers are not known (unsupervised learning). Actually the proce-
dure c)f learning is implemented by another dynamical system with the state variables 7,,.,
which converges to certain attractors representing the desired synaptic weights X.

Equation (1) represents a so-called continuously updated neural net. Its discrete

version is modeled by a corresponding contracting nonlinear map whose dynamical be-

havior, in principle, is similar to those of Eq. (1). In the simplest form such a map can be

written in a McCulloch-Pitts form [5]:

x,(? +1) = sgn~7,,xj(t)

where the sign function (sgn) plays

(4)

the role of the sigmoid 0.

By replacing sgn in (4) with a stochastic rule:

x,(t+ 1) = s~7’#j (f) (5)
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S = + 1 with probability ~~7j,xj  )

-1 with probability 1- f ~~jx, ) (6)

one arrives at a stochastic version of neural nets, while the actual implementation of the

stochastic rule (6) is still to be based upon a random number generator.

The basic limitation of detertninistic or stochastic classical neurocornputers  is in

their restricted capacity which is proportional to the size of the computer. This limitation

becomes obvious when neurocornputer  is compared with a human brain: there are 10” of

parallel units in a human brain while neur’al  chips made so far contain of the order of 10’

units, which is too few for most practical applications, [5].

3. Quantum Model of Evolution

A state of a quantum system is clescribed by a special kind of time dependent
vector I y > with complex components called amplitudes. It will help to make the corre-

spondence with Markov chains clearer if we define this vector in bra form:

{(/oa, . ..an}= (y

If unobserved, the amplitudes evolve in accordance with Schr6dinger’s equation:

daih>. zHkpaf
(it ,

which is linear and reversible.

Here Hk, is the Hamiltonian  of the system, i = W and h= 1.0545 x 10’3”JS.

The solution to Eq. (8) can be written in the following form:

{%(0..., % (f)}=’ {L!o(o)...,an (0)}U*

(7)

(8)

(9)

where U is a unitary matrix uniquely defined by the Harniltonian:
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~ = ~-, [l!/h , UU*=I (lo)

After m equal time steps At

&o(mAti...@fAt)=  {@...an(o)}  u*: (11)

the transformation of the amplitudes formally looks like those of the transition probabili-

ties in Markov chains. However, there is a

processes: in Eq. (11) the probabilities are

squares of their modules:

fundamental difference between these two

represented not by the amplitudes, but by

(12)

and therefore, the unitary matrix U is not a transition probability matrix.

It turns out that this difference is the source of so called quantum interference

which makes quantum computing so attractive. Indeed, due to interference of quantum

probabilities:

P=la, +aJ2#P, +P2 (13)

each element of a new vector a,(n~Af) in Elq. (11) will appear with the probability a,
2

which includes all the combinations of the amplitudes of the previous vector.

Function

universal features: dissipativity  and

4. Quantum Collapse and Sigmoid

As mentioned above, neural nets have two

nonlinearity. Due to dissipativity,  a neural net can converge to an attractor and this con-

vergence is accompanied by a loss of information. But such a loss is healthy: because of

it, a neural net filters out insignificant features of a pattern vector while preserving only

the invariants which characteriz.cs  its belonging to a certain class of patterns. These in-
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variants are stored in the attractor, andt Hereford, the process of convergence performs

generalization: two different patterns which have the same invariants will converge to

the same attractor. Obviously, this convergence is irreversible.

The nonlinearity increases the neural net capacity: it provides many different at-

tractors including static, periodic, chaotic and ergodic, and that allows one to store si-

multaneously many different patterns.

Both dissipativity  and nonlinearity are implemented in neural nets by the sigmoid

(or squashing) function discussed in Section 2. It is important to emphasize that the only

qualitative properties of the sigmoid  function are those which are important for the neural

net performance, but not any specific forms of this function. Can we find a qualitative

analog of a sigtnoid  function in quantum mechanics? Fortunately, yes: it is so called

quantum collapse which occurs as a result of quantum measurements. Indeed, the result

of any quantum measuretnent  is always one of the eigenvalues  of the operator corre-

sponding to the observable being measured. In other words, a measurement maps a state

vector of the amplitudes (7) into an eigenstate vector.

{ }

[

1fl,)a,,,,  an -+ 0,0...1  . ..00

‘r,

While the probability that this will be the i’” eigenvector is:

p, = (7, 2

(14)

(15)

The operation (14) is nonlinear, dissipative, and irreversible, and it can play the

role of a natural “quantum” sigmoid  function.



5. Quantum Neural Net Architectures

Let us introduce the following sequence of transformations for the state vector (7):

Ii+/(o)) --) Uty(o)) -) a, -@p//(o))}=  ly/(( + 1)) (16)

which is a formal representation of ( 14) with o] denoting a “quantum” sigmoid  function.

In order to continue this sequence, we have to reset the quantum device considering the

resulting eigenstate as a new input. Then one arrives at the following neural net:

i=l,2...  n (17)

which has the form similar to (5).

However, there are two significant differences between the quantum (17) and classical (5)

neural nets. Firstly, in Eq. ( 17) the randomness appears in the form of quantum meas-

urements as a result of the probabilistic nature of the quantum mechanics, while in (5) a

special device generating random numbers is required. Secondly, if the dimension of the
classical matrix ~j is N x N , then within the same space one can arrange the unitary mat-

rix U (or the Hamiltonian  H) of dimension 2’” x 2N exploiting quantum entanglement,

One should notice that each non-diagonal element of the matrix H may consist of

two independent components: real and imaginary. The only constraint imposed upon

these elements is that H is the Hermitian  matrix, i.e.,

and therefore, the n x n Hermi tian mat rix has n 2 independent components.

(18)

So far the architecture of the neural net (17) was based upon one measurement per

each run of the quantum device. However, in general, one can repeat each run for / times

(f< n) collecting 1 independent measurements. Then, instead of the mapping (14), one

arrives at the following best estimate of the new state vector:
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{% . ..>%} ={ O...., -l- o —~,..., ,...,;,...)
T T
‘1 r{

while the probability that the new state vector has non-z,ero i~” component is

2
pik =  aik

(19)

(20)

Denoting the sigmoid function corresponding to the mapping ( 19) as o,, one can rewrite

Eq. (17) in the following form:

(71(t +1 )= Of{utiflj( l)} (21)

The next step in complexity of the quantum neural net architecture can be obtained if one

introduces several quantum devices with synchronized measurements and resets:

a)2) (t+ 1)=0,,,,  {~2)a~2)(/)] i# 1,2...n2

.

(23)

Here the sigmoid  functions o~,$, and OP ,P,, map the state vectors into a weighted com-

binations of the measurements:

(24)

(25)

where a~~) and o~~) are the result of measurements presented in the form (19), and

Q1l, Q12, a2, and a 22 are constants.
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Thus, Eqs. (22) and (23) evolve independently during the quantum regime, i.e., in

between two consecutive measurements; however, during the measurements and resets

they are coupled via the Eqs. (24) and (25).

It is easy to calculate that the neural nets (17), (21) and (22), (23) operate with
patterns whose dimensions are n, n(n – l)(n - l’~n](nl  – tl)and  n2(~q – 1)...(n2 – /2), re-

spectively.

In a more general architecture, one can have K-parallel quantum devices
U, with /1 consecutive measurements M, for each of them (i= 1,2...k), see Fig. 1.

6.

above,

Maximum Likelihood Dynamics.

Let us turn to the simplest version of a quantum neural net (17). As pointed out

its performance is non-deterministic in a sense that each independent run of Eqs.
( 17) may lead to a different trajectory. However, in order to understand better the nonlin-

ear structure of Eq. (17), we will introduce the best estimate, or the maximum likelihood

trajectory by replacing the highest probability term in the output state by one. Choosing,

for simplicity, a unitary matrix with real components:

(  0 .858726 0 .387195 -0 .17004 0.289405J

I 0.179855 -0.801066 0.0518717 0.568555 I
u=

[

–0.362639 0.144341 –0.832118 0.394003

I

(26)

–0.314219 0.433058 0.525334 0.661628

one can verify that any initial state which is sufficiently close to the state {0001} will be

attracted to it, and therefore, the eigenstate  {0001} is a static attractor. In the same way

one can find other static attractors, for instance

{1000] {0100} {OO1O}*{I 100} etc (27)
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Another unitary matrix

(
-0.377565 0.554112 -0.741892’

1U = -0.70484 0.347627 0.618349

-0.600537 –0.756383 -0.259309,

produces periodic attractors:

{100}  +{010}--+  {001}  -+{100}  etc.

(28)

Thus, a relatively simple unitary matrices (26) and (28) within the framework of

the quantum neural net (17) or(21 ), allows one to store several different patterns, namely:

static patterns and periodically oscillating patterns. This means that in terms of the

maximum likelihood dynamics, the quantum neural net behaves as a typical nonlinear

system. However, the maximum likelihood dynamics cannot be identified with a deter-

ministic dynamics. Indeed, if one runs 13q. (21) several times, all the solutions may be

different from each other, so that with a small probability a pattern may converge to a

“wrong” attractor; moreover, a pattern may wander between all five attractors performing

a new stochastic paradigm. Strictly speaking such a “leak” from the deterministic per-

formance of the maximum likelihood dynamics is a source of errors in the performance of

a neural net. However, in many cases when neural net is expected to display certain

flexibility by escaping a prescribed paradig,m, this leak may create a useful emergent be-

havior.

In order to evaluate deviations from the maximum likelihood solution, one has to

turn to the probabilistic description of Eqs. (17) and (21).

7. Evolution of Probabilities

Let us take another look at Eq. (17). Actually it performs a mapping of an it” ei-
genvector into an j’~ eigenvector:

14



{m (y 0]+{00 y) 0}

The probability of the transition (29) is uniquely defined by the unitary matrix U:

(29)

(30)

I Iand therefore the matrix p; plays the role of the transition matrix in a generalized ran-

dom walk which is represented by the chain of mapping (29).

Thus, the probabilistic performance of Eq. ( 17) has remarkable features: it is

quantum (in a sense of the interference of probabilities) in between two consecutive

measurements, and it is classical in description of the sequence of mapping (29).

Applying the transition matrix (30) and starting, for example, with eigenstate
{1 0...0}, one obtains the following sequence of the probability vectors:

7Z0 ={10...0}

[)

p; . . . ~);

kz, ={10...0}  . . . . . . . . . = /,... z:)

p; . . . ~):
(31)

[1
m

p; ““” P;
Zn, ={lo...  o} ““” ““. ““”

p; . . . ~,;,

An i’” component of the vector n.,,  i.e., x~l, expresses the probability that the system

is in the i’” eigenstate  after m steps.

As follows from Eqs. (31), the evolution of probabilities is a linear stochastic pro-

cess, although each particular realization of the solution to Eq. (17) evolves nonlinearly,

and one of such realization is the maximum likelihood solution considered in the previous
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section. In this context, the probability distribution over different particular realizations

can be taken as a measure of possible deviations from the best estimate solution.

However, the stochastic process (31 ) as an ensemble of particular realizations, has

its own invariant characteristics w’hich can be expressed independently on these realiza-

tions. one of such characteristics is the probability ~~) that the transition from the

eigenstate  i to the eigenstate  j is performed in m steps. This characteristic is expressed

via the following recursive relationships [6]:

/:) = p;’) = p,, /;2’ = p;” - f)>,,
(32)

If

(33)

then the process initially in the eigenstate  i may never reach the eigenstate  j.

If Xf
m )

=  1 , (34)11
m=l

then the i’h eigenstate  is a recurrent state, i.e., it can be visited more than once. In par-

ticular, if

p,, = 1 (35)

this recurrent state is an absorbing one: the process will never leave it once it enters.

From the viewpoint of neural net performance, any absorbing state represents a

deterministic static attractor without a possibility of “leaks.” In this context, a recurrent,

but not absorbing state can be associated with a periodic or an aperiodic (chaotic) attrac-
tor. To be more precise, an eigenstate  I has a period z, (z > 1) if p:,”’) = O whenever



m is not divisible by z, anti- z is the largest integer with this property. The eigenstate  is

aperiodic

Another invariant characteristic which can be exploited for categorization and

generalization is reducibility, i.e., partitioning of the states of a Markov chain into several

disjoint classes in which motion is trapped. Indeed, each hierarchy of such classes can be

used as a set of falters which are passed by a pattern before it arrives at the smallest irre-

ducible class whose all states are recurrent.

For the purpose of evaluation of deviations (or “leaks”) from the maxitnum  likeli-

hood solution, long-run properties of the evolution of probabilities (31) are important.

Some of these properties are known from theory of Markov chains, namely: for any irre-
ducible erogodic Markov chain the limit p;) exists and it is independent of I, i.e.,

lim p,,‘n’) = ?rjI?- >-

while

L

7r, >0, n, = ~n,p,,, zj= O,l,...  k; L?,, Zj=+i =() J=() 11

(37)

(38)

Here ~,, is the expected recurrence time

/ li i  =’ l+~p,, p,, < m (39)
? #,

The definition of ergodicity of a Markov chain is based upon the conditions for aperi-

odicity (36) and positive recurrence (39), while the condition for irreducibility requires
existence of a value of m not dependent upon i and j for which p:) >0  for i and j.

The convergence of the evolution (31) to a stationary stochastic process suggests

additional tools for information processing. Indeed, such a process for n-dimensional ei-

genstates  can be uniquely defined by n statistical invariants (for instance, by first n mo-

ments) which are calculated by summations over time rather than over the ensemble, and
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for that a single run of the neural net (17) is sufficient. Hence, triggered by a simple ei-

genstate,  a prescribed by n-invariants stochastic process can be retrieved and displayed

for the purposes of Monte-Carlo computations, for modelling  and prediction of behavior

of stochastic systems, etc.

8. Interference of Patterns

In the previous section we have analyzed the simplest quantum neural net (17)

whose probabilistic performance was represented by a single-variable stochastic process

equivalent to generalized random walk. In this section we will turn to Eq. (21) which de-

scribes multi-variable stochastic process and start with the two -measurement architec-

ture. Instead of (29) now we have the following mapping:

i.e.,

‘o’PoF+@’Pl?ol$-@o...,
t i2 jl j2

(40)

(41)

where 12,12, J, and J1 are the eigenstates with the unit 1 is at the i:”, i~h, j~h and j~~

places, respectively. Then the transitional probability of the mappings:

p:;, (1, +1, + J,)=i i U(1, + 1,]’ =; IU,,,, + u,,,,12
2

j’ ,~ .p;’,, (1, +.12 -+ J,)=- J@, + I =$1,,,+ Uj,,j’!.

(42)

(43)

Since these mapping result from two independent measurements, the joint transitional

probability y for the mapping (40) is:

‘“ (z, + Z2 --+ J,+- 32)= P::, P::, == pQ ;, (44)
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One can verify that

It should be emphasized that the input patterns II and lZ interfere, i.e., their prob-

abilities are added according to the quantum laws since they are subjected to a unitary

transformation in the quantum device. On the contrary, the output  patterns J1 and 32

do not interfere because they are obtained as a result of two independent measurements.

As mentioned above, Eq. (44) expresses

stochastic processes

1, +31 a n d  12 + J 2

the joint transition probabilities for two

(46)

which are coupled via the quantum interference (42) and (43):

1,+12 -+ J,+J2 (47)

At the same time, each of the stochastic processes (46) considered separately has the tran-

sition probabilities following from Eq. (30):

and by comparing Eqs. (44) and Eq. (48), one cane see the effect of quantutn  interference

for input patterns.

It is interesting to notice that although the probabilities in Eqs. (44) and (48) have

a tensor structure, strictly speaking, they are not tensors. Indeed, if one maps the Hamil-

tonian  H, and therefore, the unitary matrix U to a different coordinate system, the trans-

formations of the probabilities (44) and (48) will be different from those required for ten-

sors. Nevertheless, one can still formally apply the chain rule for evolution of transitional

probabilities, for instance:
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Eqs. (44) and (49) are easily generalized to the case of ? measurements (/< n):

2

1 ’ ‘u,11..1/  = _
nxl

hit qiqt
““’q’  ‘P~...it  Pj,...]t etc.Pq...it  /t ,t_l ~=,  IU’fi  ‘ PQ,,.1,

(49)

(50)

There are two ways in which many-measurement architecture can be imple-

rnentecl:  consecutive measurements applied to the same unitary matrix, or by parallel

measurements applied to several identical unitary matrices. However, in the last case (see

Fig 1) one can introduce different matrices U(l ‘,... ~’), and then Eq. (50) can be general-

ized to:

(51)

Now the stochastic processes, in general, are correlated, and the existence of their joint

probability cannot be guaranteed ’71.

Another useful change in the quantum net architecture based upon pattern inter-

ference is the following: assume that the result of the measurement, i.e., a unit vector

~n,(t)={oo...o~o}..o} (52)

is combined with an arbitrary complex

{rtl = rq . . .nln }

vector m:

(53)

such that



1
~(?)= [%(?) +l?l]C, c =—

,,,; +...(,,1, + 1} +...m:

Then the transition probability matrix changes from (30) to

Uj ,m, +. . . u,, (m, + l)+... U,nrtln ]p: =
m:+. . .(m, + 1)2+.. .m:

( 5 4 )

(55)

Thus, nowthestmcture  of thetransition  probability n~atrix p/ can decontrolled by the

interference vector m.

Eq. (55) is derived for a one-dimensional stochastic process, but its generalization

to / -dimensional case is straight-forward

In order to clarify the more coinplex  architectures of quantum neural nets, for in-
stance, such as those given by Eqs. (21), turn to Eqs. (44), and consider the tensor p~i$ .

By simple manipulation of indeces  one obtains:

The products xl, ?rj,

vectors RI @ X2 and

““ q, 7rj* = 7r,, 7r,,PI,,, (56)

and no z,] represent the components of the direct product of two

therefore, Eq. (56) can be rewritten as:

[n,@~21,+r=I~,2[~,@~21 (57)

where plz is the tensor with the components p~i~ , and ?rlZ2 represents probability

vectors for two different stochastic processes coupled via quantum interference (see Eq.

(44)).

In order to understand the physical meaning of Eq. (57), start with a simpler case

when two stochastic processes nln2

according to the following equation:

Z,(? +

are considered separately. Then each vector evolves

r)=p#,(l) (58)
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Moreover, if these processes are coupled in a “quantum” sense, one arrives at a sinmlta-

neous system:

n:’)(f -1- 7)=/);’7rj, (f) (59) .

?f)(f + r)=p: ?rj, (t) (60)

Obviously, the vectors Z1 and Zz now represent the conditional probabilities.

Thus, due to the quantum interference, the stochastic vectors nl (given ml ) and ?r2
(given X,) are correlated. Their direct product n, @ Zz which can be associated with

the joint probability, evolve linearly according to Eq. (57). (We should notice again that

for more complex architectures of the type(51 ), the joint probability may not exist).

Eq. (57) can be generalized for / -measurement architectures:

[z, @z28...@m,]+,  = p,, ,,[z, QX263...QZ,1 (61)

9. Non-Markovian and Nonlinear Processes

The quantum neural nets ( 17) or (21), with a slight modification, can generate

non-Markovian processes which are “more deterministic” because of higher correlations
between values of the vector a, at different times, i.e., between aj(t ]a, (t – r),fl,(t–27),

etc.

Indeed, let us assume that each new measurement is combined with the 1 previous

measurements (instead of / repeated measurements). Then Eq. (50) will express the joint
distribution of al(j]a[(t  – ?),... etc.

The evolution of these probabilities is described by the equation following from

(61):



Z(t)@ Z(f– T)23...c37r(7 )=/7)= p,2,,,, {7r, (t– T)a..mp-(l+?)r] (62)

Thus, instead of / -dimensional Markov process in (61), now we have a one-dimensional

non-Markovian process of the / th order.

By combining /1 new measurements with

generate an /1 -dimensional non-Markovian process

~z previous measurements, one can

of the 1: order.

So far all the stochastic processes Considered above were linear. Now let us as-

sutne that along with the Eq. (17) which is implemented by quantum device, we imple-

ment (in a classical way) the associated probability equation (5 S). At this point these two

equations are not coupled yet. Now turning to Eqs. (52)-(56), assume that the order of

the interference vector m is played by the probability vector z. Then Eqs. (17) and (58)

take the form:

where
r
,{ ~~~ : ~~~ } 1 ,...%ijca;(t)= 00 010 0 +-put

(63)

(64)

(65)

(66)
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Uj,lr, +-... UJZ, + l~... uj”?rn
p: =

?r; +... (7rl +1)2+ . ..Z.
(67)

and they are coupled. Moreover, the probability evolution (64) becomes nonlinear since

the matrix p~ depends upon the probability vector z.

10. Applications of Quantum Neural Nets

There are two broad areas in which classical neural

The associative memory and optimization. In this section

nets become very effective:

we will analyze what addi-

tional advantages can be expected from a quantum implementation of neural nets.

The problem of associative memory is formulated as following: store a set of q n-
dimensional patterns <~(?]= ],2,...q; i= 1,2,... n) as dynamical attractor; if a new pat-

tern fi presented as an input is sufficiently close to a particular pattern ~,’), i.e., it be-

longs to the basin of the corresponding attractor, it will trigger a dynamical process which
eventually converges to the sample pattern & From the viewpoint of information

processing, such a convergence can be interpreted not only as associative memory, but

also as pattern recognition, identification, classification etc. However, the most important

part of this process which distinguishes neural nets from other computational tools is

generalization. Indeed, the convergence of the solution to an attractor is a dissipative

process: it is accompanied by the loss of (unnecessary) information. Only invariants

which characterize the belonging of a pattern to a certain class survives this loss, and they

are represented by the attractor.

The fundamental problem in associative memory is to find such a synaptic inter-
connections 7ij (see Eq. 1), 01; in case of a quantum implementation, the Harniltonian  H,

which provides a prescribed number of attractors of certain type and at certain locations.

In optimization performance the problem is inverse: the matrix 7 ~ (or H,, ) is

given, and the neural net must converge to an attractor which represent a minimum to a
certain function (or functional) formulated in terms of the matrices 7,, or H,, .
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There are several advantages which can be expected from quantum implementa-

tion of neural nets. Firstly, since the dimension of the unitary matrix n can be exponen-

tially larger within the same space had it been

pacity of quantum neural nets in terms of the

dimensions can be exponentially larger too.

Secondly, quantum neural nets have a

implemented by a quantum device, the ca-

number of patterns stored as well as their

new class of attractors representing differ-

ent stochastic processes, which in terms of associated memory, can store complex be-

haviors of biological and engineering systems, or in terms of optimization, to minimize a

functional whose formulation includes statistical invariants.

But the most remarkable property of quantum neural nets is associated with the

pattern interference. Indeed, let us assume that we store letters of the alphabet in the form
of the corresponding stochastic attractors ~n. Then if some of these letter, say

f,,,... 1$,,, are presented to the neural net simultaneously, their processing will be acconl-

panied by quantum interference in such a way that they will converge to a new attractor,
say <l ,Z ,,,. This new attractor preserves the identities of the letters <~1, ,,~v, ~ , but at the

same time, it is not a simple sum of these letters. Moreover, any additional letter ~ ~,+,

will create a totally different new attractor ~l,,,p,~+l. Actually this phenomenon is similar

to formation of words from letters, sentences from words, etc. In other words, the pattern

interference creates a grammar by giving different meaning to different combinations of

letters. However, although this grammar is imposed by natural laws of quantum me-
chanics, it can be changed. Indeed, by changing phases of the components Hti of the

Hamiltonian, one changes the way in which the patterns interfere and therefore, the

“English” grammar can be transformed into “French” grammar.

A. Learning

In order to achieve a required performance of a neural net, one has to assign ap-
propriate values to the synaptic weights 7[, i.e., to solve an inverse problem for Eq. (1).

Since the number of the weights can be enormously large, in classical neural nets analyti-

cal inversion is replaced by an equivalent dynamical procedure called learning.
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In order to illustrate how learning can be applied to quantum neural net, let us turn

to the simplest case (17), and rewrite Eq. (31) for probability evolution in the form:

(68)

where ~~~ and ~~, are the components of the input and output vectors, respectively,

and m is the number of computational steps.

Let us require that in response to the probabilistic input m~~, the quantum neural

net must converge to a stationary stochastic process with the probability distribution z~).

Moreover, assume that there are n different input vectors z~~, Then Eq. (51) can be pre-

sented in the following matrix form:

whence by inversion:

[

p; . . . ~);

. . . . . . . . .

P: ““”  P:

o 0
~(11)  ““” ‘( I.)

. . . . . . . . . 1 (69)
o

‘(nl) ““” no I
(nn) ,

n:,, ““” x;.,
. . . . . . . . .

no(nl) ““” no(n. )

I
m

(70)

Eq. (70) defines the sought transition matrix only when the limit exists, i.e., when the cor-

responding Markov chain is irreducible and ergodic. The last two requirements impose

some constraints upon the input-output relationships in Eq. (69). For the purpose of il-

lustration of the learning strategy, we will assume that the input-output relationships are

assigned in such a way that these constraints are already satisfied, and therefore, Eq. (70)

presents a unique solution to the problem of finding the transition matrix for the pre-

scribed performance of the neural net.
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Now invoking Eq. (30) one finds all the elements of the corresponding unitary
matrix Uti to the accuracy of the phases which can be set up arbitrarily. It should be no-

ticed that the phase invariance of the unitary matrix is not the rule: it is a result of sinl-

plicity  of the chosen neural net. Indeed, in case (21) the relationships between the transi-

tional probabilities and the elements of the unitary matrix include phases (see eq. (44)).

Thus, the assignments for the elements of the unitary matrix were found in ana-

lytical form, and in a relatively simple way. Unfortunately, it is still not very useful. In-

deed, even in classical neural nets the number of synaptic weights is so large that their

progratnming based upon analytically found values is unthinkable. That is why such a

programming is replaced by learning based upon dynamical convergence of synaptic

weights to the correct values. First we would like to introduce a surprisingly simple way

to generate a sufficiently rich set of unitary matrices out of a change of only one parame-

ter: the time z between two consecutive resets.

Let us start with Eq. (10), and rewrite it for the unitary matrix at the end of the

simple quantum computation period z applying the Sylvester decomposition:

( 7 1 )

where H is the Hamiltonian  of the quantum system, and A,(j = 1,2. . . n) are its eigenval-

ues, while

As follows from Eq. (71), each component of the unitary matrix U, for any fixed

Hamiltonian  is a sum of n periodic functions with periods 2 z/ AL z. If the eigenvalues

Aj do not commensurate, the behavior of the unitary matrix U, as a function of 7,

will be ergodic, i.e., this matrix eventually will take all possible values which result from
(1, dtl

all the possible combinations of its n eigenvalues  e . In other words, with no

changes in the Hamiltonian  H, one can arrange a set of unitary matrices which is equiva-

lent to those obtained from variations of n independent parameters.
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In order to find the optimal period T, start with the following Lyapunov function:

~=+,$kidu,,l’}
1.]-1

(73)

Comparing Eq. (73) and Eq. (30), one fincls  that Eq. (30) is satisfied when L has its

minitnurn.  The dynamical system which converges to this minimum can be written in the

f o r m : *

(74)

In Eqs. (56) and (57), the parameters p,’ are obtained from Eq. (53). The explicit expres-

sions for U,l (r) 2 and d U j, 2 /dT can be found from Eq. (71).

It should be noticed that the Lyaunov function (73) is not quadratic with respect to

the sought parameter z, and therefore, it can have more than one minimum. However,

for a one-dimensional case, finding a global minimum is not a hard problem.

In order to utilize the full capacity of quantum neural nets, in addition to optimal

r, one has to find and implement optimal orientation of the Hamiltonian,  and that may be

costly. However, quantum interference offers an alternative way for learning which

complements the approach described above without changing the Hamiltonian  itself. In-

deed, let us turn to the paradigm described by Eqs. (52)-(55). As follows from Eq. (55),

one can choose an interference vector m to incorporate 2 n – 1 additional free parameters

into the transition probability matrix p,; , which thereby, will have total 3n – 1 parame-

ters. Now one has to choose these parameters such that the stochastic process will con-

verge to a prescribed limit probability distribution m“
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The actual way to do this is the following. If m“ is the limit probability distribu-

tion, then the following equations must be satisfied:

(75)

Since the prescribed probability vector AT* must be normalized the matrix p:

defined by Eq. (55) is normalized in advance, the first constraint in Eq. (75) is satisfied.

But since the vector (52) is also normalized as well, and therefore, the second constraint

in (75) is satisfied too. But then as follows from Eq. (75)

(76)

i.e., the number of independent equations in the system (75) is n-1.

Thus, only n-1 constraints are imposed upon 3n- 1 free parameters of the transition

‘( )probability matrix p, m~,Uafl  .

This redundancy can be exploited in several ways. Firstly, one can minimize the

time of convergence to the stochastic attractor by maximizing the determinant

subject to the unilateral constraint:

(77)

p,, >0 (78)

Here b~ is the Kronecker delta,
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Secondly, one can exploit the entanglement effect

unitary matrix as a tensor product of q 2 x 2 matrices:

by presenting the original n x n

U= U, CNJ263...QU,,

The interference vector can be presented in the

m == m,, @n2 63.,. ml,,

~1 = y

while

(79)

same way:

(80)

(81)

Then the total number of free parameters in the matrix pf is 5q i.e., 5 Iogz n. Therefore,

the limit stochastic process Z* can be approximated to accuracy of 5 logz n parameters

out of total n – 1 parameters required for its full description. For many practical cases

such an approximation is sufficient. Due to the entanglement effects (79) and (80), this

approximation is achievecl by means of exponentially smaller resources.

of course the price we pay for using unitary matrices and initial state vectors that

have a direct product structure is that we exclude the majority of possibilities (i.e. arbi-

trary unitary matrices and arbitrary, entangled states). However, there is a sound prag-

matic reason for focussing on objects which have a direct product structure: they will

probably be much simpler to implement physically and yet still give acceptable approxi-

mations to the ideal behavior. Nevertheless, if efficient technologies can be developed

that can actually create arbitrary unitary operators and arbitrary states then our model will

be applicable to these systems too.

The actual learning procedure,

scribed probability distribution Z* (at

i.e., finding the interference m-vector from pre-

a fixed unitary matrix U) can be based upon the

gradient descend procedure well established in theory of neural nets:
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Start with the “energy” function to be minimized:

Then the interference vector mi is found as the static attractor of the following system:

(83)

while the derivatives dpv/  h{ are found from Eqs. (55). Since (82) plays the role of a

Lyapunov function, a solution to Eqs. (83) always exists (but it can be non-unique).

Thus, cluantum learning is based upon two fundamental quantum effects: Entanglement

and interference. Due to entanglement, any prescribed stochastic attractor can be ap-

proximated with a sufficient accuracy by means of exponentially smaller resources. Due

to interference, each initial vector “mixed” with the corresponding interference vector,

triggers a stochastic process which converges to a prescribed probability distribution. (It

should be recalled that without such an interference, all initial vectors would converge to

the same stochastic attractor because the governing equations for the probabilities are lin-

ear). .

B. Associative Memory

Quantum learning opens up a very simple way for implementation of associative

memory, as well as of pattern recognition and classification. Indeed, consider Eqs. (75)
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which relate the interference vector m and the limit probability distribution zr’, and re-

quire that

this means that the stochastic process with the probability 1 will approach a selected do-

main in between ~ and i2. The number of constraints imposed by Eq. (84) upon the in-

terference vector m is:

y=i, +il<n (85)

where 71 is the dimensionality  of z“.

Therefore, there exists a (212 – 1 – y) -parametrical family of vectors m which be-

longs to the domain (84) in a sense that each stochastic process triggered by a unit vector

“mixed” with the interference vector m from this family will conerge to the domain (84).

Thus, solutions to Eqs. (75) subject to the constraints (84) establishes a corre-

spondence between the” class of patterns (represented by the family of m-vectors) and

the domains in the n-dimensional space to which the stochastic processes (triggered by

m-vectors) converge. This procedure can be exploited for associative memory, pattern

recognition, and categorization.

C. Optimization

As mentioned earlier, neural networks are expected to solve some optimization

problems by finding a configuration which minimizes some functional usually referred as

an energy function.
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In order to find an energy function which is minimized by the simplest neural net

(17), consider the corresponding evolution o! probability(31 ):

p,(t + r)= ~ p,’zj (?)

where p~ is expressed by Eqs. (30), and ~ is the period of one iteration.

The solution to Eq. (86) is stable if

Iaj <1.

where Ai are the characteristic roots of the transitional probability matrix p~ .

In order to proof (87), consider the second norm of the matrix p~ :

J = maxp, , ~p&l
i=]

(88)

Hence:

max A,51p\l=l
i

Assuming that z is sufficiently small in a sense that

z,(t+r)–lq(r)=~r

(86)

(87)

(89)

(90)
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rewrite Eqs. (86) as

dp
-d: = bti pj where  bti = (p/ – di, )

or in a more general form:

dp.
;= b,lpj+

()
l–~p,

,=]

(91)

(92)

where y is an arbitray multiplier.

Eqs. (92) is equivalnt to Eq. (91) because the expression in the brackets is zero

(See Eqs. 30).

If the matrix b. is symmetric:

bti = b], (93)

one can find such a quadratic form (with respect to the variables ml) that Eq. (92) is a

grdient system for it. Indeed, consider a quadratic form

(94)

which is supposed to be minimized subject to the following constraint:

34



nz p , = l
i cl

(95)

In other words, one has to find an unconstrained minimum for the function:

The conditions for the minimum are:

dE— =

dp, [)Bl,pj + y l–~pi =01= 1

b,, b,2
b,, >0

b, 2 b,2
>O,. -. det l{, > 0

(96)

(97)

(98)

But the solution (97) is a dynamical attractor for the system of differential equation (92):

indeed, the system is stable (because of the inequalities (98)), and it has only one attractor

(97). One can also verify that Eq. (96) plays the role of a Lyapunov function for the sys-

tem (92).

Thus, the quantum neural net (17) minimizes the quadratic functional (94) subject

to the constraints (95). This minimization should be understood in the following way:

The solution to Eqs. (17) converges to

uniquely defines the probability vector

a stationary (ergodic)  stochastic process which
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(99)

i.e., the solution to the problem.

One should note that the computational problem (94), (95) is posed in such a way

that it has some specific features, namely the coefficients b,, of the quadratic form must

satisfy the conditions

nz b,, = o
j=l

( 100)

which follow from Eqs. (30) and (91).

Actually Eqs. (100) enforce the constraints (95) automatically if the initial vector

Zj(0) satisfies them, i.e., if

Obviously, the constraints (100)

be solved by the quantum neural

1 (101)

restrict the class of computational problems which can

net ( 17). However, if we move to more complex archi-

tectures (see Eqs. (21)-(23)), the restrictions ( 100) can be eliminated. Moreover, even

slight changes in the simplest architecture ( 17) can do it. Indeed, so far the reset values

of the probability vector were identical to its measurement values. Let us now assume

that no matter what the measurements are, the last components of the reset vector is al-

ways zero. In other words, we have created a leak of probability. Then instead of the

constraint (95) one has
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nz ?r, <l
i=l

(102)

and the restriction (100) can be dropped.

It should be noticed that the inequalities (98) do not restrict a computational

problem since they must be satisfied for any problem which is expected to have a mini-

mum. On the first sight, the problem which has been discussed above is one of the sim-

plest one. However, the main difficulty occurs when the dimensionality  of the problem

becomes exponentially large. Then one can face a typical NP-complete  situation when it

is very easy to check the solution, but the number of such checks to find it is exponen-

tially large. It is not a coincidence that such hard problems as the famous traveling

salesman problem, the weighted matching problem, or the graph bipartitioning  problem

can be reduced to finding the minimum of a quadratic form subject to linear constraints.

In this respect, the main advantage of quantum neural nets is in their ability to arrange a

dynamical attractor of exponential dirnensionality in a “polynomial” space. The number

of iterations necessary for approaching this attractor (they can be taken as an equivalent

of “digital” complexity) will not grow exponentially with the growth of the dimensional-

ity because of the dynamical parallelism of evolution along each dimension.

For a two-measurement architecture, the energy function minimized by Eqs. (57)

is:

(103)

As follows from (103) the tensor p,2 must be symmetric with respect to permutations of

all its indices:
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h “ = pj,,, ;2/, _
Pfi i, ’12  =  p;;, =  p,,q –  ““” etc

In addition to that, its components must satisfy the constraints (95)

nz ““P““ =1 f o r  i,il =1,2...  n1,1>
], 12

(104)

(105)

,

It should be recalled that the tensor p12 is uniquely defined by the unitary matrix U via

Eqs. (44).

For an P -measurements architecture, the energy function minimized by Eqs. (6 1)

is:

( 106)

while the tensor p,z,, f must be symmetric with respect to permutations of all its indices,

i.e.,

11.lt — . . .““’”” = pj,,,,jt –Pq...i, etc (107)

and its component must satisfy the constraint

38



nx jIJ~ =1 for ii,... it 1,2...71P,,..,;,
]l... ](=l

(108)

As in the two-dimensional architecture, the tensor plz,, is uniquely defined by the uni-

tary matrix U via Eqs. (50).

Let us make some comments on the capacity of the 1 -measurements quantum

neural nets. For that purpose we will assume that instead of 1 sequential measurements

performed on the same quantum device, we have f? parallel identical quantum devices

which allow one to perform all the measurements

ing, the space occupied by such a device will be:

S, ~ ,Ip

simultaneously. Then, loosely speak-

(109)

Although the number of degrees of freedom, i.e., the number of equations in the system

(61 ) is still equal to rl?, the number of the components in the quadratic form (106) is

s2=~c:= $k!(;:k,) =2” if!=n (110)
k=]

where C: are the binomial coefficients. Obviously, with the growth of the dimensional-

ity n,S2 grows exponentially faster than S1, and this leads to exponential “compression”

of space occupied by the P -- measurements architecture of quantum neural nets. One has

to recall that this “compression” should be added to the original “compression” per-

formed by quantum entanglement in the unitary devise according to which

rt-2q, i.e., Sz -22 ’
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where q is the number of “classical” degrees of freedom.

But since the capacity of neural nets, loosely speaking, is linearly proportional to

the number of its degrees of freedom, one can conclude that / -measurement quantum

neural nets possess an enormous capacity in comparison to classical neural nets.

11. Universal generator of stochastic processes

As shown above, the quantum neural nets can be viewed as a universal and com-

pact generator of stochastic processes, that cannot be achieved, even in principle, by any

classical device. Indeed, it can generate multi-variate correlated or non-correlated, Mark-

ovian and non-Markovian,  linear and nonlinear stochastic processes with prescribed

properties by simply changing a quantum interference pattern without even touching the

quantum hardware, i.e., the Hamiltonian. Due to quantum entanglement, the quantum

neural net can be implemented by utilizing exponentially smaller resources.

One of the most important application of simulated stochastic processes is the

Monte-Carlo methods discussed in the Introduction. The second area of application is

performance of sampling experiments on the model of the systems. In this area not only

the limit probability distributions, but their time evolutions are important as well. And in

this connection, the nonlinear stochastic processes which allows one to control the current

strategy in real time by changing the stochastic attractors and concentrating probabilities

in a certain domain’ (depending upon a changing objective) become very useful in mod-

eling decision making process in a game-type situation.
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12. Numerical simulations

In this section we will illustrate some of the basic concepts of quantum neural nets

by numerical simulations. They illustrate the behavior of a quantum neural net being

used to simulate an arbitrary Markov process. The quantum state fed into the QNN at

each iteration evolves according to the rule:

where ~“”  ) is the initial state vector supplied to the QRN, ~’””) is the last state vector

supplied to the QNN, ~n’” ) is the next state vector that will be supplied to the QNN, U

is the unitary matrix that defines the virtual connectivity matrix of the QNN, M{ . ..} is a

measurement operator that projects the state of U ~~”” ) into some eigenstate  of M and

II II denotes renormalization.

{1The sequence of measurement outcomes M U ~~”” )~defines a Markov process

with transition probability matrix can be computed exactly. For example, consider the

4X 4 unitary matrix U defined by:

I

– .426364 – .40965 i . 152799+ .449573 i .268873 –.52106 i .262525 –. 110547 i

.187355 +.256512 i .377974 –.0919836 i .624798 –.282139i –.5189+ .0924264 i

.478001 – .334466 i .230266 –.310334 i .0028144 –.0982155 i .164187 –.688263 i

–.415635+.  190776 i --.263578 –.635931 i .419877 – .0166754 i .363206 –.0920733 i )

and let the initial state V;”i’ ) be:

~inif  ) =

- .00741589 +.48916 i

–.12314–.667601 i

.344441 –. 149759 i
1.386876– .095256 i ,
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The transition probability matrix for this QNN (defined by U and V“’” ) ), which specifies

the probability of obtaining the measurement outcome “j” given that the last measurement

outcome was “i” is given by:

[

.579626 .00222459 .216761 .201389

.338022 .0781686 .156848 .426962

.785018 .159218 .0349651 .0207996

.471082 .225005 .28342 .0204926 1
)
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This is certainly a true transition probability matrix as all elements are between O and 1

and the sum of the elements along any row is 1.

In this QNN, there are four possible measurement outcomes which we can label

arbitrarily as “O” through “3”. These four outcomes correspond to the four binary values

00, 01, 10, 11 that can be obtained by making a measurement on the state that is gener-

ated after the unitary evolution i.e. by measuring the state U ~’””). The QNN defined by

U and ~i”i’ ) is

distribution over

predicted, according to our theory, to have the fixed point probability

states given by: *

(.584103 .0719151 .188539 .155444)

That is we expect to see the measurement outcome “O” 0.584 of the time, the measure-

ment outcome ‘1”, 0.072 of the time etc. Graphically, this distribution is:

0 . 5

0 . 4

0 . 3

0 . 2

0 . 1

.—.. .—. ——L .,
0 1 2 3 4

We can see that a simulation of a QRN generates a stochastic attractor that does

indeed approach this distribution: Here is an actual sequence of 100 measurement out-

comes for the QRN defined by U and ~i”i’ ):

{o,2,o,o,2,o,2,o,o,2,o,o,o,o,o,3,o,o,o,2,o,o,2,o,2,o,o,o,o,o,o,o,o,o,3,2,o,2,o,3,o,3,2,o,o,2,o,

2,0,2,0,2,0,0,0,0,0,2, 1,0,2,0,0,0,0,0,3,2,3,2, 1,3,2,0,0,3,1,3, 1,3,0,3,0,2,0,0,0,2,0,0,3,0,2,0,2,

0,0,0,0,2,2}

Visually, the distribution of states in this experimental run is found to be :
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Notice the similarity to the predicted distribution. With longer runs, the agreement with

the predicted distribution becomes exact. Moreover, a separate run of the same QRN

(same U and ~’n” ) ) yields a different sequence of measurement outcomes.

{o,o,o,o,o,o,3,o,o,o,2,o,o,o,o,2,o,o,3,2,o,o,o,o,o,2,3,o,o,o,o,o,3,2, 1,2,0,3,1,0,2,0,2,0,2,0,0,

0,0,3,2,0,2,0,0,0,2,0,0,3, 1 ,3,0,0,0,0,0,0,0,3,1,1 ,2,0,0,0,0,2,0,2,0,2,0,0,0,0,2,0,2,0,3,0,0,0,0,

3,2,1 ,2,3,1 }

Nevertheless the sequence converges to the same stochastic attractor as before:

0.6
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13. Conclusion

Thus, it has been demonstrated that quantum recurrent net as an analog device can

be based upon a sequence of quantum and classical computations. During the quantum

regime, a stochastic input pattern is transformed (according to Schrodinger equation) into

the output stochastic pattern of the same dimensionality.  During the following classical

regime which includes quantum measurements and reset, the stochastic pattern is con-

tracted into a pattern of lower dimensionality,  and this contraction is equivalent to the

performance of a sigmoid  function. The combined effect of the alternating quantum and

classical computations can be described by generalized random walk, i.e., by Markov

chains in the form of the Chapman-Kolmogorov equation. Eventually the output pattern

approaches an attractor (which can be static, periodic, or ergodic),  and such attractors can

be utilized for storing certain patterns. The assignment of an appropriate unitary matrix

can be based upon the optimal choice of the time period of the regime of quantum com-

putations which actually represents the procedure of learning. But in addition to that the

transition probability matrix can be controlled by combining the output vector with an

appropriately chosen interference vector.

Let us now summarize advantages and limitations of quantum neural nets.

The most obvious advantage of quantum neural nets which actually gave the mo-

tivation for the whole effort is an exponential increase of their capacity due to quantum

entanglement. However, the price paid for this is a significant slow down of the conver-

gence to attractors because of measurements and resets which must be performed after

each quantum computational step.

A less obvious, but much more fundamental advantage of quantum neural nets is

an interference between stochastic inputs as a result of quantum superposition. Due to

this interference, the stored patterns acquire a logical structure in a sense that each com-

bination of patterns has a qualitatively new meaning in the same way in which combina-
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tions of letters forming words do. This property has a very interesting philosophical con-

sequence. Indeed, it was always difficult to understand how biological neural nets can

learn patterns of external world without any preliminary structure built-in to their synap-

tic interconnections. The experience with artificial neural nets shows that training with-

out a preliminary structure is exponentially longer than those with a structure, and that

poses the following question: who created the “first” structure in biological neural nets

which provides the ability to learn and select useful properties in polynomial time? In

other words, can natural selection act without a “creator”? The quantum neural nets may

give a positive answer to this question: the logical structure of synaptic interconnections

can be imposed by natural laws of physics, and in particular, by quantum mechanics.

Hence, if biological neural nets utilize quantum effects in their performance, they can

learn the model of the external world, including its logical structure, in polynomial time

without any preliminary structure.

The problems of hardware implementations of quantum devices have not been

discussed in this paper. However since the quantum nets operate by interleaving quan-

tum evolution with measurement and reset operations, they are far less sensitive to deco-

herence  than other designs of quantum computers.
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. 1 The k-Parallel Quantum Neural Network Architecture
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Fig.  2 The QNN for Generating a One Dimensional Stochastic Attractor


